
Machine-Learning Methods to Investigate Heterogeneity in Longitudinal 
Patient-Reported Outcome Measures

Muditha Bodawatte Gedara, Lisa M. Lix 
Department of Community Health Sciences, University of Manitoba, Winnipeg, Manitoba

• Patient-reported outcome measures (PROMs) 

§ Appraisals from patients about their well-being and quality of life

§ Are comprised of multi-item self-report scales that capture 

perceptions about physical, mental, and social health

§ Provide the patient’s perspective on the effectiveness of healthcare 

interventions, such as surgeries or health programs

§ Are sensitive to differences in interpretation by sub-groups within the 

population

• What is Response Shift in PROMs?

§ Patients may change their interpretation of the items that comprise a 

multi-item scale over time (i.e., at multiple measurement occasions)

§ Results in inconsistencies in measurement properties of multi-item 

scales collected over time. Types of response shift: recalibration, 

reprioritization, and reconceptualization 

Figure 1: Latent variable model at two measurement occasions

§ Observed variables may be responsible for variation in response shift 

and result in response shift patterns.

• Item Response Theory Models for Response Shift

§ Item Response Theory (IRT) models have been used to identify 

individual PROM scale items that are sensitive to response shift

§ Conventional IRT models assume homogeneity in parameter estimates 

over time may result in imprecise response shift, if heterogeneity exists

§ Unsupervised machine-learning methods can aid in identifying clusters 

of individuals with similar response shift patterns 

Purpose: To develop new methods to detect heterogeneity (i.e., variation) in response shift in longitudinal 

PROMs data

Objectives:

§ Develop a longitudinal IRT model that uses unsupervised machine-learning techniques to detect 

response shift in PROMs data

§ Compare this new model with existing statistical models (i.e., conventional IRT model) to detect 

response shift

§ Apply this newly-developed model to real-world clinical data about PROMs for patients having joint 

replacement surgery

Research Questions

• Do unsupervised and conventional longitudinal IRT models differ in their sensitivity to detect 

variation in response shift in PROM item responses? 

• Are longitudinal unsupervised and conventional IRT equally sensitive to detect different types 

of response shift in PROMs item responses?

Statistical Models
• The implementation of the conventional IRT models will follow the steps below.

§ Establish the measurement model for the latent construct (e.g., mental health, physical health)

§ Test for an overall response shift effect 

§ Test for response shift on each PROM item

§ Fit the final response shift model and use it to estimate change in the latent variable scores for 

each individual

• The implementation of the unsupervised machine-learning IRT model will follow the steps in Figure 2.

Figure 2:  Implementation of unsupervised IRT model

Computer Simulation Studies
• Models will be compared using computer simulations to detect response shift.

• Simulation study characteristics: 

§ Research design characteristics: total sample size

§ Response characteristics: number of PROMs items measured 

using an ordinal scale, number of item response categories, type 

of response shift effect

§ Covariate effects: number of covariates associated with 

response shift (i.e., number of clusters with similar response 

shift patterns)

§ Covariance/correlation: magnitude of correlation among the 

measurement occasions, variance of the covariates

§ Effect size: magnitude of the true difference between 

measurement occasions; response shift effect size. 

We will then apply two models to real-world data from WRHA

Clinical Data
• Winnipeg Regional Health Authority (WRHA) Joint Replacement 

Registry

• Covariates: socio-demographic and clinical characteristics

• Both general-purpose and condition-specific PROMs are captured 

in the data (Table 1). 

• Longitudinal Data: PROMs are collected one month prior to 

surgery and one year following surgery

Table 1: Types of PROMs data

• WRHA Joint Replacement Registry contains a rich set of covariates

• Contribute to the development of valid and sensitive PROMs 

methods

• Help to advance the use of unsupervised machine-learning 

methods for PROMs data

• Valid analytic techniques will contribute to better interpretation of 

the patient’s perspective
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• Recalibration: Change in measurement structure leads to changes in error 

variances over time
• Reprioritization: Change in the relative importance of items and latent variables

contribute to change in factor loadings over time
• Reconceptualization: Change in the way the latent variable is conceptualized

leads to changes in factor loading patterns over time
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Estimate latent construct scores for the final model 

Apply a recursive partitioning model to the 
residuals of the fitted longitudinal IRT model 

Node splitting: To identify homogeneous sub-groups 
with similar response shift patterns

Fit a conventional IRT model across two 
measurement occasions
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General-purpose PROMs Condition-specific PROMs
Short Form Health Survey (SF-12): 
used to assess both mental and 
physical health

Oxford Hip Score: assess function 
and pain before and after hip 
replacement surgery

Oxford Knee Score: assess function 
and pain before and after knee 
replacement surgery
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