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OBJECTIVE

Aim 2: Use unsupervised machine learning to identify and
quantify karyotypic sub-populations.

METHODS METHODS

Table 1: Overview of PloidyCluster functions

SIGNIFICANCE
• Provide an unbiased measure of model fit
• Able to quantify populations that contain multiple subpopulations
• Can be applied in karyotype variation in cancer cells
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To develop a new, open-source, method to quantify karyotypic variation
in populations from flow cytometry data in an unbiased fashion.
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Aim 1: Build a new R package, PloidyCluster, to implement
the Dean-Jett-Fox model. Develop a statistical method to
measure model fit to flag atypical populations that contain
subpopulations.

Function Aim Purpose Statistical technique or 
algorithm 

CellCycle 1
Fit a cell-cycle 

algorithm to a cell 
population

Dean-Jett-Fox cell-cycle 
algorithm

FittedError 1
Test how well a cell 
population fits the 

Dean-Jett-Fox model

Method of least squares 
error

FindClusters 2 Find the clusters 
within the population

Hierarchal clustering 
algorithm implemented 

from hclust in the 
fastcluster R package

FindSubPops 2

Find the 
subpopulations and 

the number of cells in 
each one

Use CellCycle and 
FittedError to pair the 

clusters found by 
FindClusters

Aim 3: Implement the developed functions into PloidyCluster
and release as a Bioconductor package.

Dean-Jett-Fox algorithm:
• This model assumes that cells in the G0/G1 and G2/M clusters are

Gaussian distributed and that the G2/M cluster mean is ~1.75 the
size of the G0/G1 mean. For the S phase cells, the model fits a
second order polynomial.

• The algorithm is made of three parts: the normal distribution of the
G0/G1 peak (1), the normal distribution of the G2/M peak (2), and the
second order polynomial of the S phase(3). The parameters A,B and
C being decided by methods of least squares error.

• Write help documentation and a comprehensive user guide
(“vignette”) and upload the package to the R Bioconductor package
repository.

• For each population, the user will be provided with:
• An indication of model fit
• The number of subpopulations
• The number of cells within each subpopulation
• Calculated genome size (G0/G1 mean).

BACKGROUND

Create 24 reference 
populations with 
known karyotypes

CellCycle:
implement Dean-
Jett-Fox cell-cycle 
algorithm

Test model fit to 
each population

FittedError: using 
methods of least 
squares error

Use flowCore to load 
data into R

Determine genome 
size

Determine a critical 
value of mixed 
populations

Create a set of 100 
mock populations

Determine the error 
distribution for single 
karyotype and mixed 
populations from the 
reference and mock 
populations

Apply hierarchal agglomerative 
clustering algorithm flagged by 
FittedError from mixed 
populations 

Identify number of clusters 
in flow cytometry data

Determine which model 
options are optimal

Determine the G0/G1 and 
G2/M pairs

Create a function, 
FindClusters, which uses the 
mock populations, which have 
a known number of clusters

Write a new function, 
FindSubPop, that uses 
CellCycle and FittedError to 
find the corresponding 
clusters that yields the lowest 
error values

• Karyotypic variation in ploidy (the number of chromosome sets) and
aneuploidy (aberrant numbers of chromosomes) is observed in
multiple biological contexts, such as cancer cells and fungal microbial
populations isolated from ecological, clinical, and industrial
environments. In order to understand the dynamics of karyotype
subpopulations and their role in adapting populations, we require a
computational method to identify different subpopulations and quantify
the number of cells within them. Flow cytometry is the gold standard
method to measure genome size typically from ~10,000 cells from
each population of interest.

• Cells are present in all phases of the cell cycle (Figure 1): G0/G1 prior
to DNA replication, S phase during replication, and G2/M when cells
have double the DNA but haven’t divided. Genome size is determined
as the mean of the G0/G1 cells and can be compared to the G0/G1
mean from control populations where the ploidy is known.

Figure 1

Aim 1 workflow:
• The workflow consist of two parts, finding critical values and creating

functions. Below is a diagram of the workflow, the empirical lab work
is indicated in blue, and the computational work as green.

Find critical values:
• This workflow is used to create cutoff points and define critical values

to implement into our functions.
Create functions:
• Create CellCycle and FittedError

• The Dean-Jett-Fox algorithm is a well-known algorithm that fits a cell-
cycle algorithm to a cell population.

• Figure 2 is a visual analysis of cell size (FSC-A) and genome size
(FITC-A). From the visual analysis you can see two distinct cell
clusters representing the G0/G1 cells (centered around FITC-A = 200)
and G2/M cells (centered around FITC-A = 400). A small number of
cells are in S phase (in between the two clusters). b) Cell-cycle
analysis. The green fitted line represents the Dean-Jett Fox algorithm.

Figure 2

Find critical values Create functions

Aim 2 workflow:
• The workflow consist of identifying the number of clusters in a cell

population and determining the G0/G1 and G2/M pairs

Identify clusters and G0/G1 
G2/M pairs

The existing workflow for a mixed-populations in Flow-Jo
• In Figure 3 a) we conduct manual gating (pink and brown gates) to 

match up G1 & G2 clusters based on visual analysis. In b) we repeat 
visual and cell-cycle analysis from cells in each manual gate 
separately. 

Proposed workflow for mixed-populations
• We will automate this manual process by using hierarchal clustering to

identify the number of clusters instead of manual gating and use
methods of least square error (FitterError) and the Dean-Jett-Fox
algorithm (CellCycle) to identify the G0/G1 and G2/M pairs.

• This will eliminate human bias and will account for populations with
more then two subpopulations. (Figure 4)

Figure 3 

Figure 4 

a. Manual gating

b. Manual cell-cycle analysis
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The previous workflow can not be applied when there are more then two 
subpopulations or the visual analysis is not easy to manually gate.
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METHODS
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For asynchronous populations: 
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For synchronous populations: 
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